VECTOR-LOGO

Microcontrolador de seguimiento VECTOR VX1000 ARM TPIU

VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-PRODUCT

Presupuesto

  • Nombre del producto: VX1000 ARM TPIU Trace
  • Versión: 1.0
  • Fecha: 2025-08-29
  • Autor: Dominik Gunreben

Información del producto:

  • The VX1000 ARM TPIU Trace is a tool used for measurement and calibration setups of microcontrollers. It provides a parallel trace port with single- or multi-pin data paths and a clock pin.
  • Todas las señales son de un solo extremo.

Rastreo de TPIU terminadoview:

  • The TPIU Trace Interface consists of a parallel trace port with various pins, including Trace Clock and Data Pins 0-3. The Trace Clock typically operates at frequencies ranging from 25 MHz to 125 MHz, with data pins using DDR signaling for increased data rates.

Protocolos de seguimiento de TPIU:

  • To enable the TPIU Trace, configuration within the ECU software is necessary. This includes pin configuration, multiplexer configurations, and trace clock configuration. Detailed instructions for these configurations can be found in the user manual.

Instrucciones de uso del producto

  1. Setting up TPIU Trace:
    • Para utilizar la interfaz de seguimiento TPIU, siga estos pasos:
    • Connect the TPIU Trace pins according to the specified pin assignments.
    • Configure the ECU software settings for the Trace Pins interface as per VXconfig settings.
  2. Configuración de pines:
    • Configure the trace data pins and clock pin based on the target controller specifications. Refer to the provided code examples para la ayuda.
  3. Multiplexer Configurations:
    • If your evaluation board or ECU has multiplexers or DIP switches, ensure they are configured to select the TPIU-Trace. Refer to code examples para diferentes placas de evaluación.
  4. Trace Clock Configuration:
    • Set up the Trace Clock frequency by selecting the appropriate clock source and setting a divider to achieve the desired frequency. Refer to the user manual for detailed instructions.

Rastreo de TPIU ARM VX1000

  • ARM specifies a parallel target interface for its microcontrollers.
  • Depending on the frequency and the number of trace pins used, a significant measurement bandwidth can be achieved with the TPIU Trace Interface.
  • Sometimes the TPIU trace is also referred to as Trace-Pin-Interface or ETM-Trace-Interface.
  • The TPIU Interface is a unidirectional interface from the target controller to the Debugger/Measurement Hardware.
  • La interfaz TPIU no se puede utilizar de forma independiente, sino que se puede utilizar una interfaz de destino adicional como SWD o JTAG es necesario para los accesos de escritura al destino.

Rastreo de TPIU terminadoview

  • The TPIU Trace Interface provides a parallel trace port with a single- or multi-pin data path and a clock pin.
  • All signals are single ended.VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-1

TraceCLK:

  • Trace Clock. Typical frequencies are 25 MHz .. 125 MHz.
  • The TraceDx uses DDR signaling, transferring data on both clock edges to double the effective data rate. So, when in this document a Trace Clock frequency of 25 MHz is used, the data rate on each data pin is 50 Mbit/s.

TraceD0-TraceD3:

  • Data Pins 0..3. If other target interface connectors are used, even more Trace Data Pins can be used if this is supported by the target controller (see 5.4 Typical connector used for TPIU Trace).

TPIU Trace Protocols

  • The protocols used on the interface may differ depending on the target controller and the use cases.
  • Typically, the TPIU Protocol is used as a container format for multiple data streams.
  • Data streams wrapped in the TPIU protocol can be ARM protocols like Embedded Trace Macrocell (ETM), Instrumentation Trace Macrocell (ITM) or System Trace Macrocell (STM).
  • The VX1000 hardware can decode the TPIU and encapsulated protocols on the fly.
  • VX1000 and the VX1000 Application Driver use ETM, IT, M and STM to acquire measurement data efficiently.

ECU software configuration

  • Para habilitar el TPIU Trace, se debe realizar alguna configuración dentro del software de la ECU.

Pista:

  • The VXconfig settings for the Trace Pins interface, which are referenced in the following sections, can be found in VXconfig VX1000 device->POD->Trace PinsVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-2

Configuración de pines

  • Typically, there are no dedicated trace pins on the target controller, but the trace functionality is multiplexed with other peripheral functionalities on the same pin.
  • To reduce the chance that the trace cannot be used as some required pins are blocked by other functionalities, the same trace-pin functionality is often routed redundantly to different pin groups.
  • To enable trace, the target controller must be configured to provide pins with trace functionality, and the target PCB must be designed accordingly.
  • Código exampLos archivos para la configuración de pines para diferentes controladores de destino se pueden encontrar en “4. Ejemplo de códigoamples para la configuración de TPIU”.
  • Estos pines de seguimiento incluyen los pines de datos de seguimiento (Trace_Data) y el pin de reloj (Trace_Clk). El número de pines de datos de seguimiento admitidos para los diferentes hardware del VX1000 se puede consultar en 5.8 Posibles configuraciones de TPIU.
  • Multiplexer configurations
  • Si su placa de evaluación o ECU tiene multiplexores o interruptores DIP fuera del controlador para cambiar entre diferentes conexiones periféricas, estos también deben configurarse para seleccionar TPIU-Trace.
  • Véase “4. Código Examples para la configuración de TPIU” por ejemploamples de diferentes placas de evaluación.
    Trace Clock configuration
  • Besides the Trace-Clock pin configuration addressed in “2.1 Pin configuration”, the Trace_Clk must be configured to operate at the desired frequency.
  • Typically, the clock tree contains a multiplexer to select from different clock sources, and frequency dividers to decrease the source frequency. Select the clock source and set a divider to achieve the desired frequency.
  • To verify the TPIU Clock configuration, the VX1000 system measures the detected Trace_Clk signal and shows the result in VXconfig.
  • The values are updated on VX1000 reset or ECU reset. So, there is no need to connect an Oscilloscope to double-check the TPIU frequency.VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-3
  • The VX1000 provides three ways to configure the TPIU Clock, which are described in the following sections.
  • The registers that are configured for TPIU Clock MUX and Divider are explained in “4. Code Examples for TPIU Configuration” for the specific controllers.
  • Either the VX1000 hardware can configure the registers from the outside through JTAG/SWD (ver 2.3.1 y 2.3.2), o los registros son configurados por la aplicación (ver 2.3.3).
  • Use VX1000 defaultsVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-4
  • When using “VX1000 defaults”, the VX1000 hardware configures the multiplexer and clock divider in the target in an educated guess approach.
  • Typically, clock sources are selected that are expected to be in use in the target, like clocks for cores or the system clock.
  • The VX1000 uses the divider, which results in the maximum possible Trace_Clk frequency supported by the controller.
  • Because the controller and especially the clock tree can be configured in different ways, this setting will not always lead to the expected results.
  • Use the “Last detected frequency” information in VXconfig to verify the resulting frequency. If the trace clock is not as expected, see the following sections.

VXconfig settingsVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-5

  • If actual values are provided in VXconfig, the VX1000 hardware will set TPIU Clock MUX and TPIU Clock Divider without the need to modify the ECU software.
  • This allows an easy probing of different settings. Use the “Last detected frequency” to verify that the resulting frequency meets your expectations.

Use ECU settingsVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-6

  • While with the previous configuration modes the VX1000 hardware actively configures the TPIU Clock in the target, the VX1000 can also be put in passive mode by selecting “Use ECU Settings”.
  • In this case, the ECU software must configure the complete Trace Pin interface, as the VX1000 will not modify the clock configuration.
  • Please note that the trace sources like STM500, ETM and ITM are still configured by the VX1000 and must not be accessed by the ECU application.

Consejo: To verify your settings, boot the target system with the VX1000 disconnected and check with an oscilloscope that the Trace_Clk pin on the target connector is toggling at the expected rate.

Configuración del controlador de la aplicación VX1000

  • To use the ARM TPIU trace feature, the VX1000 Application Driver must be included into the Target Controller software. This software is delivered as source code and can be integrated easily.
  • The required configuration options that are needed for the TPIU Trace are listed here. Target controller-specific settings are listed in “4 Code Examples for TPIU Configuration“ in the “Target Specific Application Driver Configuration” sections.VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-7

Consideraciones de rendimiento

  • The measurement methods used with the TPIU Trace interface are all copy-based approaches.
  • This means that the data must be copied by the CPU from its original location to a destination where the Trace messages are generated and sent via the TPIU interface.
  • The involved trace protocols also consume some bandwidth of the target interface and must be considered.
  • Please note that our OLDA copy methods typically consume a CPU runtime ofVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-8

Target Interface Bandwidth

  • Due to the number of different setups, the following table provides an overview del ancho de banda real de la interfaz de destino. Ancho de banda Examples de STM500VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-9

Estancamiento

  • All the trace protocols utilizing the TPIU Interface are configured by the VX1000 in such a way that stalling is enabled. This means that no data can get lost due to target interface bandwidth limitations.
  • If the data is copied faster than the interface bandwidth, the CPU is stalled/paused until there is space available on the target interface.
  • The trace paths typically include buffers that help smooth out copy bursts, thereby reducing the likelihood of stalling. Please consult the target reference manual of your controller for details.
  • Como resultado, la interfaz TPIU debe usarse con la máxima frecuencia posible y tantos pines de seguimiento como sea posible para minimizar los efectos negativos del estancamiento.

Código Examples para la configuración de TPIU

  • The pseudo-code exampLos archivos de esta sección deberían brindarle sugerencias sobre cómo configurar el subsistema TPIU como preparación para el uso de calibración y medición DAQ.

Instrumentos de Texas

  • El Pseudo Código examples use names from the TI-SDK ,which is copyrighted of Texas Instruments. Please refer to the TI-SDK documentation.

AM263

  • AM263 TPIU SpecificationVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-10
  • AM263 Trace-Pin configurationVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-11

Consejos adicionales:

  • Pins must be configured with PIN_SLEW_RATE_HIGH
  • AM263 Target Specific Application Driver ConfigurationVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-12

Pseudo-CodeVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-13VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-14

J6E

J6E TPIU SpecificationVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-15

J6E Trace-Pin configurationVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-16VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-17

Consejos adicionales:

  • For high clock frequencies, configure the outputs with PORT_DRIVE_STRENGTH_15

J6E Target Specific Application Driver Configuration

VX1000_MEMSYNC_TRIGGER_PTR

  • // #define VX1000_MEMSYNC_TRIGGER_PTR <user defined>
  • Para este chip, VX1000 utiliza el seguimiento ETM y puede trabajar con cualquier bloque arbitrario de 16 bytes de espacio de dirección escribible (8 bytes alineados), que es utilizado exclusivamente por el controlador de la aplicación.
  • Si no define VX1000_MEMSYNC_TRIGGER_PTR, este bloque se asigna automáticamente dentro del rango de memoria gVX1000.
  • Es posible que sea posible mejorar el rendimiento de la medición definiendo VX1000_MEMSYNC_TRIGGER_PTR y proporcionando un búfer en una memoria más rápida (TCM) o en caché.

TDA4M/J721E

  • TDA4 TPIU SpecificationVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-18
  • TDA4 Trace-Pin configurationVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-19

Consejos adicionales:

  • Access from MCU cores to STM500 goes through the R5-RAT address translation module. The application driver setting VX1000_MEMSYNC_TRIGGER_PTR is an address in the MCU address space and must translate to address 0x0009000110 in MAIN
  • address space (which is a stimulus port of the STM-500 trace unit). In the example below, the RAT is programmed to use the same address in both domains.
  • TDA4 Target Specific Application Driver Configuration
  • VX1000_MEMSYNC_TRIGGER_PTR
  • #define VX1000_MEMSYNC_TRIGGER_PTR (0x09000000 + 0x110)

Pseudo-CodeVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-21

VX1000 hardware adaptation

  • The hardware connection is driven by the number of pins, used trace frequency and the used VX1000 hardware. In the following section, possible target controller connectors are explained alongside a description how a setup with the VX1000 can look like.
  • Available VX1000 adapter and Evalboard Evaluation Kit Heads (EEK-Heads) are described, and possible use cases are explained.

Volumentage niveles

  • La interfaz TPIU no se puede utilizar de forma independiente, sino que se puede utilizar una interfaz de destino adicional como SWD o JTAG es necesario para los accesos de escritura al destino.
  • In some situations, the voltagniveles e del SWD/JTAG La interfaz y los pines TPIU difieren porque se utilizan diferentes bancos del controlador de destino y los diferentes bancos de E/S pueden tener diferentes volúmenes.tagy niveles.
  • Setups that can cope with different voltagLos niveles e están resaltados explícitamente.

Flat Ribbon cables

  • Many setups are designed in a way that flat ribbon cables can be used. This ensures an easy, flexible, and cheap way to connect the VX1000 POD with the evaluation board/ECU. The maximum frequency allowing stable communication is limited to 100 Mhz.
  • Even though flat ribbon cables can easily be made at any desired length, they should always be kept as short as possible to avoid interference.VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-22
  • Flex-Ribbon cables are mostly symmetrical, meaning that both ends have the same number of pins/cables.
  • An asymmetrical usage is also possibl,e meaning that one side has more pins connected as the other side. This allows the flexible adaptation of e.g., a 44-pin connector to a 20-pin connector.

Customized Flex PCB

  • Para proyectos en los que los cables planos no son suficientes, Vector ofrece un servicio de desarrollo para diseñar y fabricar Flex-PCB personalizados para satisfacer los requisitos del proyecto.VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-23

Typical connector used for TPIU Trace

  • Para marcar los Pines con un significado especial se utilizan estos coloresVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-24

ARM Coresight 20

VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-25VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-26 VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-27

ARM Mictor 38

Link to ARM specification: https://developer.arm.com/documentation/100893/1-0/Target-interface-connectors/Mictor-38-connector

VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-28VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-29

Señales no utilizadas por el VX1000:

  • Dbgrq
  • Recuperación de datos
  • EXTTRIG
  • RTK
  • TRACECTL

ARM MIPI60

VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-30VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-31

Vector “Coresight 44”

VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-32

  • The Coresight 44 connector is a Vector-defined connector. This connector is used as Target Interface Connector on the relevant EEK-Heads and PODs.VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-33VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-34

Vector Adapter

  • Vector proporciona adaptadores para los conectores de destino más importantes para simplificar el uso de la interfaz TPIU en combinación con el VX1000.

VX1940.10: Mipi 60 AdapterVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-35

VX1940.11: Mictor 38 Adapter

VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-36

Vector EEK Heads
VX1902.09 EEK Head

  • La adaptación de hardware para la interfaz TPIU/Trace normalmente se realiza a través del cabezal VX1902.09.
  • Coresight 44
  • Conector POD propietario de VectorVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-37

Vector Flex Adapter

  • La conexión entre el POD y los cabezales EEK se realiza con un adaptador flexible VX1901.01.VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-38

Possible TPIU Setups

  • Setups for VX1453

Nota

  • The VX1453 POD supports TPIU trace from hardware revision 7.0 onwards.

Coresight 20 SetupVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-40

Asymmetric Flat Ribbon cableVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-41

MIPI 60 Setup Flat RibbonVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-42

Cable plano de cinta de 44:44 pinesVECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-43

Customized FlexPCB Setups

VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-44VECTOR-VX1000-ARM-TPIU-Trace-Microcontroller-FIG-45

Más información

Preguntas frecuentes

Documentos / Recursos

Microcontrolador de seguimiento VECTOR VX1000 ARM TPIU [pdf] Manual de instrucciones
VX1000, VX1000 ARM TPIU Trace Microcontroller, ARM TPIU Trace Microcontroller, Trace Microcontroller, Microcontrolador

Referencias

Deja un comentario

Su dirección de correo electrónico no será publicada. Los campos obligatorios están marcados *